Predicting the 2014-2015 NBA Season

Over the weekend I created a model in Excel to predict the 2014-2015 NBA season. The model simulates the full 82-game schedule, using player Win Shares from the 2013-2014 season to estimate the strength of each team, accounting for roster changes. This model is not perfect, or even particularly sophisticated, but it is interesting. Here are the model’s predictions as of 10/15/2014, with projected playoff teams in bold.

Eastern W L PCT GB Home Road
Cleveland 61 21 0.744 0 31-10 30-12
Toronto 57 25 0.695 4 30-11 27-14
Chicago 49 33 0.598 12 26-15 23-18
Washington 44 38 0.537 17 24-17 21-20
New York 44 38 0.537 17 23-18 21-20
Miami 42 40 0.512 19 22-19 20-21
Detroit 42 40 0.512 19 22-19 20-21
Charlotte 41 41 0.500 20 22-19 19-22
Atlanta 41 41 0.500 20 22-19 19-22
Indiana 37 45 0.451 24 20-21 17-24
Boston 30 52 0.366 31 16-25 14-27
Brooklyn 26 56 0.317 35 14-27 11-30
Orlando 25 57 0.305 36 14-27 12-29
Milwaukee 24 58 0.293 37 14-27 11-30
Philadelphia 14 68 0.171 47 8-33 6-35
Western W L PCT GB Home Road
LA Clippers 57 25 0.695 0 30-11 27-14
San Antonio 57 25 0.695 0 30-11 27-14
Oklahoma City 54 28 0.646 3 29-14 26-15
Phoenix 53 29 0.646 4 28-13 25-16
Golden State 53 29 0.646 4 28-13 25-16
Portland 49 33 0.598 8 26-15 23-18
Houston 47 35 0.573 10 25-16 22-19
Dallas 47 36 0.566 10 24-17 22-19
Memphis 41 41 0.500 16 22-19 19-22
Denver 40 42 0.488 17 21-20 19-22
Minnesota 37 45 0.451 20 20-21 17-24
Sacramento 32 50 0.390 25 17-24 15-26
LA Lakers 31 51 0.378 26 17-24 14-27
New Orleans 27 55 0.329 30 15-26 12-29
Utah 25 58 0.301 33 14-27 11-30

You can download my full spreadsheet here. It’s complicated but not impossible to follow. It does not exactly match the results presented above because I have a messier version that accounts for recent injuries, e.g. Kevin Durant.

The Cavs, Spurs, and Clips are the favorites to win the title in this model (a previous version of this model also had the Thunder in this class, but Kevin Durant is now injured). Comparing these estimates to over-unders in Vegas, the biggest differences are Brooklyn (lower), Indiana (higher), Memphis (lower), Minnesota (higher), New Orleans (lower), Phoenix (higher). If you take the time to read through the methodology at the end of this post, you may be able to see why some of these differences exist. Some are probably reasonable, others may not be.

How It Works

Many of the ingredients for this model were presented in my previous three posts, where I compiled game-by-game results for the 2013-2014 season, built a simple model to predict rookie performance, and tracked roster changes. Now the task is pretty simple: estimate the strength of each team, figure out how unpredictable games are, and then simulate the season using the strengths, accounting for uncertainty. At the end I discuss weaknesses of this model, which if you are a glass-half-full type of person also suggest areas for improvement.

Step 1: Estimate the strength of each team. Team strengths are estimated by adding up the 2013-2014 Win Shares for the top twelve players on each NBA team. In my last post I gave a spreadsheet with Win Shares for all 2013-2014 NBA players based on data from basketball-reference.com. I made three adjustments to this data for the purposes of this analysis:

  • Added rookies. I estimated projected 2014-2015 Win Shares for rookies using the logarithmic curve given in this post.
  • Accounted for injuries to good players. Kobe Bryant, Derrick Rose, Rajon Rondo, and a couple of other high profile players were injured in 2013-2014. I replaced their Win Share total with the average of the past three seasons, including the season they were injured. Is this reasonable? I don’t know.
  • Trimmed to 12. I manually trimmed rosters so that only the 12 players with the highest Win Shares remained.

Adding Win Shares gives an overall “strength rating” for each team.

Step 2: Estimate the unpredictability of game results. Most of the time, a good team will beat a bad team. Most of the time. Can we quantify this more precisely? Sure. From a previous post, I determined that home court advantage is approximately 2.6 points per game. We also found that although the difference in total season wins is a predictor of who will win in a matchup between two teams, it is a rather weak predictor. in other words, bad teams beat good teams quite often, especially at home. For our prediction model we make another simple assumption: every team’s performance over the course of the season varies according to a normal distribution, with the mean of this distribution corresponding to their overall team strength.

Normal distributions are defined by two parameters: mean and standard deviation. If I know what the normal distribution looks like then I can estimate the probability of the home team winning in a matchup: take the difference of their team strengths, then calculate the cdf of the distribution at –2.6 (the home court advantage). But what is the standard deviation? I can estimate it by “replaying” all of the games in the previous season. If I guess a value for the standard deviation, I can calculate win probabilities for all games. If I add up the win probabilities, for say, Boston, then this should sum to Boston’s win total for the season (sadly, 25). So if I want to estimate the standard deviation, all I have to do is minimize the sum of deviations from estimated and actual 2013-2014 win totals. I can do this using Excel’s Solver: it’s a nonlinear minimization problem involving only one variable (the standard deviation).

It turns out that the resulting estimate does a very good job of matching 2013-2014 results:

  • The estimated win totals for all teams were within 2 wins of their actual values.
  • The estimated home winning percentage matches the actual value quite closely!

Step 3: Determine win totals for the 2014-2015 season. I obtained the 2014-2015 schedule for $5 from nbastuffer.com. Using this schedule, I calculated win probabilities for each game using the team strengths in Step 1 and the standard deviation in Step 2. If I add up the totals for each team, I get their estimated win totals. Voila! Since the prediction is created by looking at each game on the schedule, we also get home and away records, in conference records, and so on. It’s also easy to update the estimate during the season as games are played, players are traded or injured, and so on.

Why this model stinks. The biggest virtue of this model is that it was easy to build. I can think of at least ten potential shortcomings with this model:

  1. Win Shares are probably not the best metric for individual and team strength.
  2. It assumes that individual performance for 2014-2015 will be the same as 2013-2014. Paul Pierce isn’t getting any younger.
  3. It does not account for predictable changes in playing time from season-to-season.
  4. 2014-2015 win shares are not normalized to account for players leaving and entering the league.
  5. 2014-2015 win shares do not account for positive and negative synergies between players.
  6. There is no reason to believe that the standard deviation calculated in Step 2 should be the same for all teams.
  7. I have not given any justification for using a normal distribution at all!
  8. The vagaries of the NBA schedule are not accounted for. For example, teams play worse in their second consecutive road game.
  9. Several teams, including the Philadelphia 76ers, will tank games.
  10. Injuries were handled in an arbitrary and inconsistent fashion.

It will be interesting to see how this model performs, in spite of its shortcomings.

Author: natebrix

Follow me on twitter at @natebrix.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s